
RL-Guided Runtime-Constrained Heuristic
Exploration for Logic Synthesis
Yasasvi V. Peruvemba†, Shubham Rai‡, Kapil Ahuja†, Akash Kumar‡

†Computer Science and Engineering, IIT Indore, India ‡ Chair of Processor Design, TU Dresden, Germany
†{ee170002061, kahuja}@iiti.ac.in ‡{shubham.rai, akash.kumar}@tu-dresden.de

Abstract—Within logic synthesis, most optimization scripts
are well-defined heuristics that generalize over a variety of
Boolean circuits. These heuristic-based scripts comprise various
optimization algorithms which are applied sequentially in a
specific order over a logic graph representation of Boolean
circuits (typically in the form of And Inverter Graphs (AIGs)
or Majority Inverter Graphs (MIGs)). These heuristics, despite
being well-defined generalizations, may not perform well over all
kinds of circuits. In order to develop custom heuristics specific
to a particular Boolean circuit that performs well, we propose
a runtime-constrained reinforcement learning (RL) approach
which is able to generate scripts to carry out logic synthesis
flows. Within our approach, we incorporate a graph convolution
network (GCN) in order to perform a holistic exploration of the
search space. To carry out an extensive evaluation, we identify
three different classes of environments consisting of different
baseline optimization sequences. The experimental results re-
veal that our model outperforms the prevalent state-of-the-art
work [24] and the best heuristic-based scripts of Berkeley-ABC
[4]. Our evaluations show that our framework provides up to
an average of 8.3% further reduction in level over the EPFL
Benchmark Suite [8] as compared to the Berkeley-ABC scripts.
Further, we develop a framework for the EPFL mockturtle [20]
logic synthesis libraries and generate custom scripts using our
RL-based approach.

Index Terms—Reinforcement Learning, Graph Convolutional
Network, Logic Synthesis, Majority-Inverter Graph

I. INTRODUCTION

Logic synthesis deals with optimizing and minimizing
Boolean circuits, with the major objective being either to
reduce the overall size, depth or power of the circuit. Various
logic representations such as And-Inverter Graphs (AIGs) [5]
or Majority-Inverter Graphs (MIGs) [9] have been proposed
which offer compact yet multi-level logic representations
which enable better runtimes for logic synthesis flows [5, 13].
Using Boolean and algebraic methods, several algorithms such
as balancing, refactoring, resubstitution, rewriting have been
developed over these multi-level logic representations which
can be sequentially applied over any given logic network to
achieve size and depth reduction. Hence, several heuristic-
based general purpose scripts like resyn, compress2rs exist
within the state-of-the-art academic tool, Berkeley-ABC [4]
which employs a fixed sequential set of optimizations that
performs well over a variety of logic circuits.

However, logic synthesis being intractable [1], these power-
ful optimization scripts may or may not provide improvement
over all circuits. For a given Boolean circuit, the final repre-
sentational features, i.e the number of nodes and the depth of
the logic network, may change vastly with the application of
various permutations of such optimization algorithms.

Therefore, rather than trying to enumerate the vast possi-
bilities of different permutations of optimization algorithms,
we aim to use a reinforcement learning (RL) agent in order
to determine an appropriate sequential order of algorithms to
be applied over any logic network. Our approach enables a
generic and user-defined environment which can be used to
target specific optimization goals during the inference phase.

Various works in the literature have targeted logic synthesis
using ML techniques. The authors in [14] formulate the
logic synthesis and optimization step as a Markov decision
process (MDP), and use a policy gradient approximation via
graph neural networks (GNN) to explore the search space.
Similarly, authors in [24] made use of a graph convolutional
network (GCN) to incorporate the logic network. Works such
as [10, 12, 24] show the ability of GCNs as powerful neural
networks designed to work directly on graphs and leverage
their structural information. Inspired by the state representation
as used in [24], we formulate logic synthesis as an MDP and
make use of GCNs to incorporate the structure of logic graphs.
However, unlike [24], we model both the reward function and
the exit condition for a given logic network using runtime as
the primary indicator. The reason behind this consideration
is that runtime is often a defining aspect for various logic
optimization algorithms and synthesis flows. Hence, our work
focuses on generating custom scripts that aim to perform
better than the baseline heuristic-based optimization scripts
and algorithms of Berkeley-ABC (compress2rs, dch and dc2)
within a specific threshold of their runtime.

We also leverage the use of MIGs with EPFL mocktur-
tle [20] as the logic network representation for a given Boolean
network. Since mockturtle does not provide any specific
heuristic-based scripts, we develop custom scripts that can be
applied for a given network. We generate models to perform
inference which outputs a custom sequence of optimization
algorithms that perform well over the given logic network.

The major contributions of our work are as follows:
• Proposing a runtime-constrained reinforcement learning

approach to develop custom optimization scripts
• Developing an efficient inference framework which can

produce custom scripts quickly for any given Boolean
circuit

• Employing the MIG logic representation for a Boolean
network through the EPFL mockturtle [20] framework
and generating custom heuristics for the same

After extensive experimentation the results show that our work
performs better than the work [24] on average by 9.5% in
reduction in level while giving similar reduction in the number
of nodes. The scripts generated by our method also show a

a b c

V V

V

V V

VV

SC

(a) AIG representation

a b c

M

SC

M

M

(b) MIG representation

Fig. 1: The logic graphs used in Berkeley-ABC and EPFL
mockturtle for a 1-bit Full Adder. The dotted lines indicate an
inverted signal.

lesser degree of variation in runtimes (90%-160%) with respect
to the baseline script as compared to their work (102%-215%).
Our work also performs up to 8.3% better in average depth
reduction and over 2% better in average node reduction than
the heuristic-based scripts of Berkeley-ABC. The generated
scripts by our RL agent on average run within 30% of the
excess runtime of the baseline scripts. The results also produce
an overall improvement of up to 27.9% in average depth
reduction and 25.5% in average node reduction from the initial
configurations.

II. FUNDAMENTALS

Within this section, we provide a background for AIGs,
MIGs, optimization algorithms in logic synthesis and MDP.

A. And-Inverter Graph

An and-inverter graph (AIG) is a type of logic graph used
to functionally represent any Boolean network, i.e the AIG
representation is Boolean complete. It behaves as a directed
acyclic graph (DAG) where each node is a 2-input AND
function, and the edge weight corresponds to whether or not
the given signal is inverted. Fig. 1a shows an AIG for a 1-
bit Full Adder. An AIG is used as a common logic graph
representation within logic synthesis frameworks. Berkeley-
ABC [4] uses an AIG as the representation of Boolean netlists
and provides various optimization techniques [3, 6, 13] that are
used to reduce the size and depth of the logic graph.

B. Majority-Inverter Graph

A majority-inverter graph (MIG) [7, 9] is another variant
of logic data structures that can fully functionally represent
any given Boolean netlist. The MIG also behaves as a DAG,
wherein each node is a 3-input majority gate, with the edge
weight representing whether the input signal is inverted or
not. Fig. 1b shows an MIG for a 1-bit Full Adder. EPFL’s
mockturtle [20] is a logic synthesis framework that provides
MIGs as a logic graph representation of Boolean networks.
Similar to AIGs, multiple graph based optimization algorithms
[7, 18, 19, 23] can be applied over the MIG to exploit its
structural and functional properties.

C. Markov Decision Process
MDP refers to a discrete-time stochastic control process.

The mathematical framework of any MDP formulation is
provided with actions, states, rewards and state transitions.
The most fundamental property for an MDP is for any future
state that can be reached via any action, to only be completely
dependent upon the current state. The works [14, 24] formulate
logic synthesis as an MDP and choose an appropriate state
representation for AIGs in order for the framework to obey the
markovian property. We utilise a similar state representation
for the MIG logic graph representation as well.

III. RELATED WORK AND MOTIVATION

A. Related Work
Recently, there have been several works [14, 16, 22, 24] that

have aimed to employ learning techniques for script generation
to perform logic graph minimization. The work [22] developed
an advantage actor critic agent that minimises area of a given
logic network under some delay constraint. Similarly, the work
[16] proposed to use a convolutional neural network (CNN)
to determine whether a generated script is useful or not. They
randomly generated 4-repetition synthesis flows and pruned
them using the trained CNN classifier. However, in their
approach, they generate multiple 4-repetition scripts which
makes their approach time-intensive. We note that the work
[24] used a graph convolutional network (GCN) to provide an
RL framework for logic synthesis and define their framework
by generating scripts with the same sequence length of the
heuristic baseline (resyn2). However, they apply this technique
only to specific benchmarks which makes their approach time-
intensive. Also, they do not generate an inference model which
can be applied to any test circuit.

B. Motivation
Our work is motivated by the fact that runtime is a cru-

cial component in defining logic synthesis flows. Hence, we
propose a runtime-constrained reward function and threshold
for our RL framework, while also designing an inference
framework that can produce custom scripts for any benchmark
in much lesser overall time. We reason that the sequence
length of the baseline script which has been used by previ-
ous work [24] is not an appropriate parameter for the RL
agent, because the action space consists of both slow and
fast optimizations. This can lead to an uncertain runtime
of the generated script for a given Boolean circuit. Hence,
the baseline runtime is a more representative parameter as
compared to the number of steps used by [24].

We aim to find custom sequences tailor-made for a specific
benchmark (or type of benchmarks), by utilizing a reinforce-
ment learning (RL) approach which will consume a runtime
equivalent to a threshold of the runtime of the competing
heuristic script. In reinforcement learning, the learner is a
decision-making agent that takes actions in an environment
and receives a reward for its actions in trying to solve a
problem. After a set of trial and error runs, it learns the best
policy, which is the sequence of actions that maximize the
total reward. We formulate logic synthesis as an MDP, hence
modelling the reinforcement problem to be solved by our agent
as the minimization of the nodes and depth of the logic graph.

Drawing a similar parallel, we can describe the environment
as the logic graph of the given Boolean circuit and the actions
as the optimization algorithms made available to the agent. We
further design extensive environments that make use of both
the AIG and MIG logic graph representations.

IV. METHODOLOGY

Within this section, we introduce our framework for per-
forming reinforcement learning, the revamped reward func-
tion, graph convolution networks, the overall neural network
architecture, and the reinforcement learning technique used.

A. Reinforcement Learning Framework
1) MDP Formulation: Logic optimization within the

paradigm of logic synthesis is inherently a sequential process.
Each permutation of sequentially applied algorithms results
in a different structural representation of the same Boolean
network. The work [24] determines a formulation of state
space similar to [14], by incorporating the current logic graph
into the state. The state space is governed by the actions
provided to the RL agent and we provide a framework for the
user to choose the actions available to optimize a given logic
network. It is important to note that each permutation of this
generic user-defined action space results in a new environment,
and hence different models for such environments need to be
trained in order to provide inference. We therefore develop a
generic and user-defined action space, and hence make use of
a generic state space, each unique to its own environment upon
which the RL agent proceeds to interact with. Further details
regarding the action spaces is provided under section IV-A3.

2) State Space: The state space for the reinforcement
learning framework is defined as follows -
• The number of nodes and depth of the current logic graph
• The number of nodes and depth of the previous state
• A normalised one hot vector of the last 3 actions (dy-

namically dependent on action space size)
• The scalar representing the current state, normalised by

the runtime of the expected sequence
• The AIG or MIG Graph
We use the information of the current logic graph, and

of the previous state. We then concatenate this information
with the normalised one-hot vector representing the previous 3
actions. Finally we concatenate the scalar to represent the state
space. The graph embeddings of the AIG or MIG are handled
separately using a graph convolutional network explained in
section IV-C below. As AIGs have 2 fanins, the different types
of nodes can be evaluated as (a) Constant 1 (b) Primary Input
(c) Primary Output (d) No inverted inputs (e) One inverted
input, and (f) Two inverted inputs.

In case of MIGs which possess 3 fanins, their node type
can be defined as (a) Constant 1 (b) Primary Input (c) Primary
Output (d) No inverted inputs (e) One inverted input (f) Two
inverted inputs, and (g) Three inverted inputs. We then model
feature embeddings for either of the graphs by representing
each node as a one-hot vector of its node type.

3) Action Space: Since the aim of our work is to compete
with the best known heuristic-based optimization scripts of
Berkeley-ABC within the threshold of their runtime, our
action space is defined as discrete optimization algorithms

that are used within compress2rs, along with dch and dc2.
We developed a set of environments in order to compare the
RL agents effectiveness over the various benchmarks on the
different baselines. We model six different environments, each
solving a particular issue or tackling a separate baseline, which
will be discussed in section V. Five of the six environments use
Berkeley-ABC and AIGs as the intermediary representation
whereas the last environment uses EPFL mockturtle and MIG
to represent the logic graph. Table I lists the environments
and their corresponding baselines. Table II shows the various
actions for the environments 2-4 based on Berkeley-ABC,
along with the environments that they are a part of. The rest of
the action spaces for environments are provided in section V.
We further develop a generic system that allows a user to select
the optimization algorithms that they wish to apply over the
logic network, changing the allowed actions for the RL Agent
to learn from while competing against the best heuristic-based
scripts of Berkeley-ABC.

TABLE I: List of modelled environments

Env no. Environment Baseline used

1 Comparison Env resyn2; resyn2;
2 Compress2rs Env compress2rs;
3 Compress2rs Env without balance compress2rs; without balance
4 Dch Env compress2rs; dch; balance -l;
5 Reduced Dch Env compress2rs; dch; balance -l;
6 Mockturtle Env 10 runs of balance; rewrite;

TABLE II: List of actions for environment 2,3,4

Action Env no.

balance -l; 2, 4
rewrite -l; 2, 3, 4
rewrite -z -l; 2, 3, 4
refactor -l; 2, 3, 4
refactor -z -l; 2, 3, 4
resub -K 6 -l; 2, 3
resub -K 6 -N 2 -l; 2, 3
resub -K 8 -l; 2, 3, 4
resub -K 8 -N 2 -l; 2, 3, 4
resub -K 10 -l; 2, 3, 4
resub -K 10 -N 2 -l; 2, 3, 4
resub -K 12 -l; 2, 3, 4
resub -K 12 -N 2 -l; 2, 3, 4
resub -K 16 -l; 2, 3, 4
resub -K 16 -N 2 -l; 2, 3, 4
dch; 4
dc2; 4

4) Reward Function: As mentioned in sections above that
runtime of any optimization is an important criterion within
the domain of logic synthesis, we aim to devise a better overall
optimization sequence within the limits of the runtime of
the best heuristic-based scripts. Hence, we model our reward
function with paying special emphasis to the runtime of any
given optimization algorithm. We propose to find the marginal
gain of improvement of a state sk on taking an action ak with
a runtime of tk, reaching a new state sk+1. We define the
term betterment function using a value function that provides
a weighted sum of a given state sk’s normalised number
of nodes and depth, with respect to the initial state. The
value function is defined in equation 1, where c1 and c2, are
configurable parameters that are fixed per experiment. sk.n

and sk.l refer to the normalised number of nodes and depth of
the kth state with respect to the initial network configuration.

v(sk) =
c1 ∗ sk.n+ c2 ∗ sk.l

c1 + c2
(1)

The betterment function between any two states is then de-
fined as the difference of their value functions. We then finally
define our reward function, utilising the marginal improvement
of the state, along with using a baseline, in order to help with
the convergence. The baseline is defined by the betterment
gained by applying the baseline optimization algorithm to the
benchmark that we use for any given environment (mentioned
in Table I), which is further normalised by the runtime of the
algorithm. The reward function is defined by equation 2.

r(k) =
(v(sk)− v(sk+1))

tk
− baseline (2)

We can configure the optimization focus of the RL Agent to
either target reduction of the size or the depth of the circuit.
This can be carried out simply by altering the value of c1
(size) and c2 (depth) to handle the appropriate weight given
to the size or the depth of the circuit in the value function.

B. Reinforcement Learning Algorithm

We make use of the REINFORCE with Baseline [2] method
provided in algorithm 1 [15], which is a policy gradient
method that aims to directly learn the policy π(a|s, θ). The
action values gained from this policy are used to develop
a probability distribution using softmax. The desired action
is then sampled from this distribution, to aid the agent in
exploration. In an episode, a trajectory is followed which
performs a set of actions (as derived from the action spaces
provided in Table II) until the termination condition is reached.
We model the termination condition as a threshold on the
overall runtime of the RL agents applied actions. Once these
actions are accumulated, the method uses a discount factor
γ to provide the policy to learn from experience. We set the
value of γ to be 0.95.

The objective of this method is to maximise the expected
total reward gained on a trajectory following π. In order to
reduce the variance in the expected returns, a baseline is
subtracted from it. The baseline is modelled as a differentiable
state-value function that approximates the expected reward.

C. Graph Convolutional Network

Due to logic networks being represented as directed acyclic
graphs (DAGs) in both the AIG and MIG intermediary rep-
resentations, we use graph convolutional networks, in order
to capture information related to the structure and property of
the logic graph. As specified before, the initial node feature
is defined by the node type to the logic graph that a given
node belongs to. We define three layers of graph convolutions
over the initial features, wherein each layer accumulates infor-
mation based on node connectivity, and serves as the feature
embedding for the next layer.

h
(l+1)
i = σ(b(l) +

∑
j∈N (i)

1

cij
h
(l)
j W

(l)) (3)

Algorithm 1 REINFORCE with Baseline for estimating πθ
Input: A differentiable policy parameterization π(a|s, θ)
Input: A differentiable state-value function parameterization
v̂(s,w)

Output: Final updated policy πθ and v̂(s,w)
Initialize policy parameter θ
for Number of Episodes do

Generate a trajectory s0, a0, R1,sT−1, aT−1, RT fol-
lowing π(.|., θ)
for each step of the trajectory t=0,1,2...T − 1 do
G ← ΣTk=t+1γ

k−t−1Rk
δ ← G− v̂(st,w)
w← w + αwδ∇v̂(st,w)
θ ← θ + αθγtδ∇ lnπ(at|st, θ)

end for
end for

Where N (i) is the neighbour set of node i, σ is the activation
function and cij is equal to the product of the square root of
node degrees:

√
|N (i)|

√
|N (j)|. We then take the average of

all output features h(v) from the successive convolutions as
the final graph feature,

hfinal =
1

P

∑
i∈P

h
(v)
i (4)

D. Neural Network Architecture
The network architecture for policy parameterization

π(a|s, θ) is specified in Fig. 2. We use a simple fully connected
feed forward neural network with graph embeddings from
the GCN as the differentiable policy parameterization. The
graph convolution network consists of 3 convolutional layers,
of either (6, 12, 12, 4) or (7, 12, 12, 4) channels for inputs,
hidden layers and outputs of the AIG or MIG logic graph
respectively. The simple feed forward net consists of 3 fully
connected layers with ReLU as the activation function. For the
differentiable state-value function parameterization v̂(s, a), we
use a 3 layered fully connected neural network with ReLU
activations as well. The input vector is our state-space repre-
sentation. It becomes a dynamic vector of length equivalent to
number of actions + 5. The policy parameterization πθ outputs
a probability distribution of actions to be taken and the state-
value parameterization returns a scalar for the expected reward
for that given state.

E. Runtime Indicator and Inference Framework
We use runtime as our primary indicator in our modelling

of the framework. The exit condition for an episode is defined
as a threshold of the runtime of the best heuristic-based
scripts of Berkeley-ABC. We aim to perform better than the
heuristic-based methods in approximately a similar amount
of processing time. To account for border cases wherein the
generated trajectory currently utilises up to 80% of the runtime
threshold or above, we set the final threshold upon the runtime
of the trajectory at 20% over the exact runtime of the baseline
heuristic-based script for each environment.

We also carry forward the Pytorch [17] models that are
used to explore the state space from benchmark to benchmark

Dense
in. dim x 28

Dense
32 x 32

ReLU

ReLU

Dense
32 x out. dim

Softmax

Input

State Representation
1 x in. dim

Graph
Nodes x Feat. Size

GraphConv2D
Feat. Size x 12

ReLU

GraphConv2D
12 x 12

ReLU

GraphConv2D
12 x 4

Node Mean

 Concatenate

π (a|s,θ)

Graph Convolutional Network

Fig. 2: Neural network architecture for policy parameterization
πθ

over our training set. Both the policy parameterization and
state-value parameterization models are trained over a random
order of selected EPFL benchmarks [8]. These models are
then used within the designed inference engine, that directly
produces a custom script that runs within the time threshold of
the baseline scripts. For any given environment, we can modify
its hyper parameters identified by c1, c2, in order to target
more specific optimizations using our RL agent. We develop
six different policy and state-value parameterizations for each
environment, based on manipulating these hyper parameters.
We then perform inference by running all the models over the
input logic circuit and pick the best result by using the value
function.

V. EXPERIMENTATION

The Berkeley-ABC as well as the EPFL mockturtle python
interface1, were implemented using C++ and pybind11 [11].
The graph convolutional network is implemented using Deep
Graph Library [21]. All the environments are trained on CPU,
as the network size is relatively small. All our experiments are
performed on a server cluster.

Since environment 1 is a comparison with the state-of-
the-art [24], the same benchmarks in their work are used
to perform training. For the rest of the environments, we
extract a training set of benchmarks from the arithmetic
and random control EPFL Benchmark Suite [8]. For all the
experiments, we make the entire action space available to the
RL agent in order to make fair comparisons with the heuristic-
based scripts of Berkeley-ABC. We run 200 episodes per
benchmark as training, and accumulate the results by running
inference on all the benchmarks. The experiments are split

1https://github.com/YasasviPeruvemba/mtlPy

into 3 sections, one regarding comparisons with the state-
of-the-art work [24], another tackling the stronger heuristic-
based scripts of Berkeley-ABC and finally employing the MIG
representation via the EPFL mockturtle framework.

A. Comparison with the state-of-the-art (Env 1)
To draw fair comparisons to the work of [24], we make use

of the same benchmarks, baseline script (2 runs of resyn2)
and action space. We make use of 6 different value pairs
mentioned in Table IV for the reward function and pick the
best script post inference. On replicating their work, we note
that the runtimes of the generated scripts from their method is
uncertain and vary from 102% to over 215% resulting in an
average of 41% excess usage of the runtime of the baseline
script. Our scripts however display a lesser degree of variation
from 90% to 160% with an average use of 32% of excess
runtime of the baseline script. We also note that the time taken
to generate the scripts by our method by running inference on
6 value pairs (4hrs 35min) is around 25% of the overall time
taken by their approach over a single reward setting (17hrs
40min). Table III shows the inference results of our work
contrasted with the results of the 2 sets of flows reported by
the work [24]. Both RL-1 and RL-2 are flows dedicated to
node reduction and level reduction respectively as proposed
by [24]. The results under column RF indicate the inference
results of our framework. The suffixes N and L pertain to the
nodes and level of the optimized circuit representation. We
note that our scripts provide upto 30% reduction in number
of nodes and up to 35.7% reduction in level from the initial
circuit configuration. This outperforms RL-1 in level reduction
by 9.5%, while being within 1% of the reduction in nodes.
With respect to RL-2, our work gives 1.1% better reduction in
nodes and 2% betterment in levels.

TABLE III: Comparison with the state-of-the-art [24]

Benchmark RL-1 N RL-1 L RL-2 N RL-2 L RF N RF L

C1355 386.2 17.6 390.0 16.0 386.0 17.0
C6288 1870.0 88.0 1882.0 88.0 1870.0 88.0
C5315 1337.4 27.2 1364.7 25.4 1315.0 24.0
dalu 1039.8 33.2 1095.6 30.0 1085.0 29.0
k2 1128.4 19.8 1187.5 13.0 1137.0 13.0
mainpla 3438.4 25.0 3504.0 25.5 3461.0 23.0
apex1 1921.6 19.2 2004.7 17.0 1885.0 17.0
bc0 819.4 18.6 851.7 17.5 831.0 16.0

Improvement from 30.9% 26.2% 28.9% 33.7% 30% 35.7%
initial circuit

B. Heuristic-based scripts of Berkeley-ABC (Env 2-5)
1) Env 2 (Baseline script: compress2rs): For the action

space of this environment, we simply enumerate the different
types of optimizations utilised inherently by Berkeley-ABC
within compress2rs. We also add 2 very large optimizations
as resubstitutions with a maximum cut size of 16, along with
a node replacement option of 2. We train 8 different models,
with the value pairs of (c1, c2) as provided in Table IV.

We average the total sum of rewards for all benchmarks
over each episode of a given value pair, and observe that for
the value pair (0, 1), the rewards show erratic behaviour. We
note that this occurs due to some optimizations being heavily
biased towards reducing level (eg. balance), in a very short
time, presenting a case of local minima for the RL agent.

TABLE IV: Value pairs of c1, c2 for each environment

c1 c2 Env. numbers

0 1 2, 3
1 0 1, 2, 3, 4, 5, 6
1 1 1, 2, 3, 4, 5, 6
2 1 1, 2, 3, 4, 5, 6
2 3 1, 2, 3, 4, 5, 6
2 5 2, 3
2 7 1, 2, 3, 4, 5, 6
2 9 1, 2, 3, 4, 5, 6

Note that this particular behaviour is not observed for cases
where the value function holds importance to the number of
nodes. Fig. 3a shows the reward plot for the value pair (2,
3) during training. To tackle the bias towards depth from
the optimization algorithm balance, we create and perform
experiments on environment 3.

2) Env 3 (Baseline script: compress2rs - without balance):
The algorithm balance is a very time inexpensive optimization
script used to perform the algebraic balancing of the multi-
input AND-gates contained within the logic graph. The bal-
ancing is applied in a topological order selecting the minimum
delay tree-decomposition for each multi-input AND-gate. To
perceive the effects of balance on our state space, we design
another environment similar to environment 2 but devoid of
this optimization. The baseline is a version of compress2rs
without any balancing steps.

We observe a slight betterment in the quality of results
(Fig. 3b) from a theoretical perspective as the cumulative
rewards gained are relatively better, and the agent starts to
outperform the baseline from 75 episodes onward. But the
lack of balance makes the result worse with respect to the
final depth as compared to that of environment 2. Therefore,
we incorporate balance into the modelling of the rest of the
environments, while keeping sure that no value pair is unduly
biased toward the level. We therefore remove the option for
value pair (0, 1) from all further experiments.

3) Env 4 (Baseline script: compress2rs; dch; balance -
l): With environment 4, we aim to push the threshold further
by using stronger optimizations provided by Berkeley-ABC.
We include both dch and dc2 within our action space, while
discarding the two relatively less used optimizations of re-
substitutions of maximum cut size 6 with node replacement
option 2. From Fig. 3c, we observe that adding more pow-
erful optimizations into the action space result in the total
rewards overtaking that of the baseline within 55 episodes.
We investigate this performance gain by inspecting the value
function at the end of every episode, averaging it over all
the benchmarks in Fig. 4a. This gradually downward flowing
graph provides us with 2 interesting observations – (i) when
total sum of rewards start to perform much better than the
baseline, the value function goes below the baseline script
value, i.e with an average of 26% betterment from the initial
circuit. We note spikes in value functions where there are
dips in the reward graph, which is logically consistent (as
an average decrease in reward pertains to lesser improvement
from the baseline in terms of depth and size); (ii) despite

TABLE V: Action space for environment 5 using cumulative
algorithms as a single action

Actions

rewrite -z -l; balance -l;
dch; balance -l;
dc2;
resub -K 8 -l; refactor -z -l; resub -K 8 -N 2 -l;
resub -K 10 -l; refactor -z -l; resub -K 10 -N 2 -l;
resub -K 12 -l; refactor -z -l; resub -K 12 -N 2 -l;

gaining such improvements on performance, there are still
circuits that the RL agent only performs slightly better than
the baseline script in. In some cases where circuits are small
(eg - ctrl, int2float), and already well optimized, there seems
to be little room for the RL agent to minimize. Hence causing
the gradual downward slope in the value graph.

4) Env 5 (Baseline script: compress2rs; dch; balance -l):
For this particular environment we do not produce models to
run inference. We desire that the RL agent specifically find the
best script for a given logic network, without any bias from the
other benchmarks. We analyse all the scripts generated by the
environments 2 through 4 and aim to devise a smaller action
space in order to – (i) reduce the vastly variant search space,
focusing on a more thorougher exploration and exploitation
over the training networks; (ii) normalise the run time of each
action to avoid extra biasing.

On inspecting the script compress2rs, we notice a particular
repeating structure wherein, 2 resubstitutions of the same
maximum cut size are applied surrounding either a rewriting
or refactoring algorithm. We use this structure with refactor
to form a boilerplate action consisting of multiple algorithms
and derive statistics over the custom algorithms given by the
RL agent for env 2, 3 and 4 in order to produce the derived
action space given in Table V. We discard resubstitutions for
maximum cut size 16 from the action space, as they were
the least used resubstitution algorithms. Both rewrite -l and
refactor -l were also discarded due to them having significantly
less usage compared to their zero cost replacement counterpart.

From the reward plots of environment 5 (Fig. 3d), we
observe that having a smaller action space leads to better
performance along with the total rewards being consistently
above the baseline. We also note a decrease in variance of the
rewards, hence indicating a better learning for the RL agent.
This environment performs better than environment 4 in terms
of value function reduction as well due to the RL agent being
able to better navigate the search space. Fig. 4b shows the
average value function plot over the 200 episodes. Despite a
gradual slope, we notice that the RL agent performs better
than the baseline, consistently from 130 episodes onward.

C. EPFL mockturtle framework : Env 6 (Baseline script: 10
runs of balance; rewrite)

Environment 6 is based on EPFL mockturtle, wherein we
represent the logic graph using an MIG. Mockturtle provides
many configurable algorithms for performing logic optimiza-
tions on the MIG [7]. We design the action space for this
environment using the most basic techniques that are provided,
in order to develop an understanding of the MIG optimization
algorithms. Table VI specifies the action space used within

25 50 75 100 125 150 175 200
Episode

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
m

 o
f R

ew
ar

ds

(a) Env. 2 with value pair (2, 3)

25 50 75 100 125 150 175 200
Episode

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
m

 o
f R

ew
ar

ds

(b) Env. 3 with value pair (1, 1)

25 50 75 100 125 150 175 200
Episode

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
m

 o
f R

ew
ar

ds

(c) Env. 4 with value pair (1, 0)

25 50 75 100 125 150 175 200
Episode

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
m

 o
f R

ew
ar

ds

(d) Env. 5 with value pair (1, 1)

Fig. 3: The reward plots showing the performance of the RL agent on different environments for a specific value pair. The
shadow describes the standard deviation. The red line indicates the baseline performance.

25 50 75 100 125 150 175 200
Episode

0.60

0.65

0.70

0.75

0.80

0.85

Va
lu

e
fu

nc
tio

n

(a) Env. 4 with value pair (1, 0)

25 50 75 100 125 150 175 200
Episode

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Va
lu

e
fu

nc
tio

n

(b) Env. 5 with value pair (1, 1)

Fig. 4: Value function plots showing the betterment of the RL
agent on different environments for a specific value pair. The
shadow describes the standard deviation. The red line indicates
betterment by the baseline script from the initial circuit.

TABLE VI: Action space for environment 6

Action Description

rewrite; Performs basic rewriting of MIG
rewrite -udc; Rewriting while using don’t cares
rewrite -azg; Rewriting while allowing 0 gain substitutions
rewrite -udc -azg; Rewriting using don’t cares with 0 gain substitutions
balance; Performs basic balancing of the MIG
balance -c; Balancing only the critical path of MIG

this environment. We specifically choose a smaller set of
actions similar to environment 5 for better performance. As
more complex algorithms are developed and integrated into
the mockturtle python interface, the action space space could
be further modelled to provide better results.

We analyse the reward function plot shown in Fig. 5a and
observe that the RL agent starts to perform better than the
baseline script within 65 episodes. This plot grows very slowly
after 90 episodes, hence causing minute changes in the value
function as can be seen in Fig. 5b. We believe this occurs due
to two reasons, namely – (i) the nature of the action space,
resulting in similar actions being taken that provide a sufficient
reward; (ii) an inherent minima for the logic graph size and
depth that can be achieved by these combinations of algorithms
In either case, we believe this to be a good starting point for
further analysis and exploitation of reinforcement learning for
logic synthesis over MIGs.

25 50 75 100 125 150 175 200
Episode

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
m

 o
f R

ew
ar

ds

(a)

25 50 75 100 125 150 175 200
Episode

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Va
lu

e
fu

nc
tio

n

(b)

Fig. 5: Reward and value function plots for environment
6 based on EPFL mockturtle (a) Reward plot showing the
performance of the RL agent on environment 6 for value pair
(2, 9). (b) Value function plot showing the betterment of the
RL agent on different environments for value pair (2, 9). The
shadow describes the standard deviation. The red line indicates
the baseline performance.

VI. RESULTS

We estimate the effectiveness of the RL agent’s performance
over environments 2-6, by showing both the training and
inference results over the EPFL benchmark suite2. As Adder,
arbitrer and decoder showed no improvement on applying
optimization algorithms, they were excluded from our exper-
imentation along with div and hyp, which showed significant
training times, being large circuits. The training results are
obtained from the best script generated in the last 10 episodes
during the training phase. Each result tabulation describes the
range of optimizations achieved by showing the number of
nodes and levels of the worst and best value pair setting
for each benchmark denoted by the superscripts w and b.
The baselines for environments are provided in Table I. We
show the results on each benchmark by the RL agent under
RF L and RF N which represent the level and nodes of the
logic graph. The best and worst cases for each benchmark are
determined by performing a value function calculation of the
resulting nodes and level with (c1, c2) as (1, 3).

ABC L, ABC N as well as MTL L, MTL N depict the
level and nodes achieved by applying the baseline over the
benchmark. Ratio refers to the ratio of the runtimes of the

2excluding adder, arbitrer, decoder, div and hyp

TABLE VII: The inference results of the RL agent on Env 4

Benchmark Ratiob RF Nw ABC N RF Nb RF Lw ABC L RF Lb Optb

sin 0.79 5175.0 4983.0 5019.0 224.0 159.0 160.0 1 0
voter 0.62 10065.0 7930.0 8015.0 59.0 60.0 57.0 1 0
priority 1.33 785.0 427.0 429.0 235.0 44.0 33.0 2 7
max 0.88 2830.0 2828.0 2828.0 296.0 175.0 163.0 1 0
router 0.87 244.0 147.0 146.0 52.0 19.0 19.0 1 1
mem ctrl 0.45 44944.0 39733.0 30522.0 114.0 89.0 78.0 2 7
cavlc 0.87 650.0 612.0 600.0 18.0 14.0 15.0 1 1
sqrt 0.65 18340.0 18220.0 18229.0 6054.0 6018.0 5939.0 1 0
i10 0.79 2118.0 1690.0 1654.0 49.0 37.0 31.0 1 1
multiplier 0.85 26058.0 24336.0 24348.0 273.0 264.0 262.0 1 1
i2c 0.82 1210.0 1015.0 997.0 20.0 13.0 12.0 1 1
square 0.47 16933.0 15842.0 15790.0 248.0 248.0 246.0 2 7
bar 0.82 2952.0 2952.0 2952.0 14.0 12.0 12.0 2 1
int2float 1.80 231.0 206.0 193.0 16.0 11.0 10.0 2 7
ctrl 3.27 89.0 88.0 90.0 11.0 10.0 7.0 2 7
log2 0.44 29618.0 28676.0 28599.0 402.0 303.0 303.0 2 7

Improvement from 23.8% 25.5% 23.4% 27.9%
initial circuit
w Worst Case. b Best Case.

TABLE VIII: The training results of the RL agent on Env 5

Benchmark RF Nw ABC N RF Nb RF Lw ABC L RF Lb Optb

sin 4949.0 4983.0 4965.0 165.0 159.0 157.0 2 9
voter 7974.0 7930.0 8153.0 58.0 60.0 55.0 1 1
priority 670.0 427.0 427.0 202.0 44.0 41.0 2 1
max 2807.0 2828.0 2826.0 208.0 175.0 157.0 2 9
router 201.0 147.0 143.0 23.0 19.0 17.0 1 0
cavlc 578.0 612.0 596.0 15.0 14.0 12.0 1 1
i10 1591.0 1690.0 1634.0 35.0 37.0 31.0 1 0
i2c 1011.0 1015.0 1026.0 14.0 13.0 11.0 2 7
bar 2952.0 2952.0 2952.0 12.0 12.0 12.0 2 1
int2float 194.0 206.0 193.0 11.0 11.0 10.0 2 1
ctrl 79.0 88.0 102.0 8.0 10.0 6.0 2 3

Improvement from 34.9% 46.2% 35.6% 53.4%
initial circuit
w Worst Case. b Best Case.

baseline and the generated script by the RL agent. Opt refers
to the value pair used. We compare the results of the best
scripts and our RL framework by deriving the betterment from
the initial circuits with the value pair (c1, c2) as (1, 3).

Table VII displays the inference results of our RL agent
over environment 4. We note that our inference framework
outperforms the best heuristic-based scripts of Berkeley-ABC
by an average margin of 3.8% in value function reduction,
and an average overall betterment of 27.3% from the initial
benchmark configurations. On further analysis, we see similar
patterns of value pair (2, 7) performing well in environment 3
over the benchmarks in both training and inference. The same
overall trend is noted wherein, a similar value pair performs
well on a particular benchmark over each environment. The
complete set of results for all environments are not shown here
due to space constraints and can be viewed here3 instead.

Table VIII displays the training results on environment 5
which was specifically designed with a smaller and more
concise action space. The training results of environment 5
outperform the best heuristic-based optimizations of Berkeley-
ABC by 7% in average reduction of value function and shows
an overall of 36.5% reduction in value function from the initial
circuits. We note that the reduction in depth compared to the
baseline is consistent among all the benchmarks.

We leverage newer more configurable optimization algo-
rithms and the logic representation of MIG provided within
EPFL mockturtle in designing environment 6. Table IX shows
the inference results for environment 6 based upon EPFL
mockturtle. We notice a significant increase in performance by
the inference engine from the baseline with a average reduction
in value function of 18% with an overall value function

3https://github.com/YasasviPeruvemba/reinforcedLS

TABLE IX: The inference results of the RL agent on Env 6

Benchmark Ratiob RF Nw MTL N RF Nb RF Lw MTL L RF Lb Optb

sin 1.00 8141.0 12974.0 6632.0 138.0 144.0 150.0 2 3
voter 0.98 17230.0 20263.0 11807.0 62.0 65.0 68.0 2 3
priority 0.82 1553.0 1885.0 1201.0 186.0 145.0 186.0 1 0
max 1.02 4704.0 7056.0 2926.0 116.0 159.0 95.0 2 3
router 0.86 360.0 514.0 426.0 31.0 17.0 19.0 1 1
mem ctrl 0.98 57789.0 84180.0 57779.0 108.0 65.0 95.0 2 9
cavlc 0.88 727.0 761.0 733.0 16.0 12.0 12.0 2 9
sqrt 0.50 59157.0 48050.0 16322.0 4471.0 4060.0 2416.0 1 0
i10 0.90 2683.0 3663.0 2940.0 38.0 26.0 27.0 2 9
multiplier 1.04 35857.0 63295.0 33823.0 201.0 252.0 190.0 2 3
i2c 0.90 1570.0 1631.0 1546.0 17.0 10.0 10.0 2 9
square 0.72 21735.0 30146.0 19580.0 159.0 207.0 55.0 2 9
bar 0.76 3615.0 3615.0 3309.0 12.0 12.0 12.0 2 1
int2float 0.76 264.0 274.0 269.0 15.0 10.0 10.0 2 9
ctrl 0.54 129.0 139.0 127.0 7.0 6.0 6.0 2 9
log2 0.90 44690.0 76271.0 42222.0 343.0 304.0 313.0 1 1

Improvement from -52.3% -3.2% 32.4% 37.4%
initial circuit
w Worst Case. b Best Case.

reduction of 27.3% from the original circuit representations.
Specifically for the benchmarks voter, sqrt and multiplier, we
see significant improvements over their respective baselines.
We believe that with more optimization algorithms being
integrated into the mockturtle python interface, the RL agent
will be able to perform even better.

For outlier cases with respect to runtime (eg - log2, square
in Table VII and ctrl, sqrt in Table IX), we note that the final
action chosen is an action with a significant contribution to
the total runtime of the script generated (eg - dch, resub -K
16 -l, rewrite -azg). Hence, choosing such large optimizations
as the last action by the RL agent before the threshold being
violated, leads to a larger runtime than anticipated. We aim to
thoroughly investigate this occurrence in our future work.

VII. CONCLUSION

In this work, we develop a runtime-constrained reinforce-
ment learning based framework incorporating a graph convo-
lutional network to create tailor-made scripts that outperform
the prevalent state-of-the-art and heuristic-based scripts of
Berkeley-ABC within the bounds of a similar runtime. We
develop frameworks for both AIG and MIG as logic graph
representations. We model 6 different environments using
varied action spaces to develop models for our RL agent
to provide inference. To demonstrate the results of our RL
agent, we compare the inference results of our framework to
the results provided in [24] and note a performance increase
of 9.5% in reduction of level in approximately 25% of the
overall time taken. We perform inference runs over the EPFL
Benchmark Suite and show that our agent was able to learn
the search space effectively and outperform the best heuristic-
based scripts of Berkeley-ABC in compress2rs, dch and dc2,
within the threshold of their runtime. We note that scripts
generated from the inference models for environments 1, 2, 3,
4 and 6 all outperform their respective baselines. Further, the
results of environment 5 based on EPFL mockturtle display
that the RL agent can provide very proficient optimizations
with up to an average of 36.5% value function reduction
from the initial circuit structure. In conclusion, this framework
generates custom scripts faster and provides better reduction
of logic graph depth and size within a threshold of the runtime
of the competing baseline heuristic of choice.

REFERENCES
[1] Giovanni De Micheli. Synthesis and optimization of digital circuits.

1994.
[2] Richard S. Sutton et al. “Policy Gradient Methods for Reinforcement

Learning with Function Approximation”. In: NIPS. 1999.
[3] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. “DAG-

Aware AIG Rewriting a Fresh Look at Combinational Logic Synthe-
sis”. In: DAC. 2006.

[4] Alan Mishchenko et al. ABC: A system for sequential synthesis and
verification. 2007.

[5] Robert Brayton and Alan Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool”. In: CAV’10. 2010.

[6] A. Mishchenko et al. “Scalable don’t-care-based logic optimization
and resynthesis”. In: ACM TRECTS. (2011).

[7] L. Amarú, P. Gaillardon, and G. De Micheli. “Majority-Inverter
Graph: A novel data-structure and algorithms for efficient logic
optimization”. In: DAC. 2014.

[8] L. Amarù, P. Gaillardon, and G. Micheli. The EPFL Combinational
Benchmark Suite. 2015.

[9] L. Amarú, P. E. Gaillardon, and G. De Micheli. “Majority-Inverter
Graph: A New Paradigm for Logic Optimization”. In: TCAD (2016).

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Con-
volutional Neural Networks on Graphs with Fast Localized Spectral
Filtering”. In: NIPS. 2016.

[11] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. py-
bind11 – Seamless operability between C++11 and Python.
https://github.com/pybind/pybind11. 2017.

[12] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification
with Graph Convolutional Networks”. In: ICLR. 2017.

[13] L. G. Amarù et al. “Improvements to Boolean resynthesis”. In: DATE.
2018.

[14] W. Haaswijk et al. “Deep Learning for Logic Optimization Algo-
rithms”. In: ISCAS. 2018.

[15] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2018.

[16] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. “Developing
Synthesis Flows without Human Knowledge”. In: DAC. Association
for Computing Machinery, 2018.

[17] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: NeurIPS. 2019.

[18] H. Riener et al. “On-the-fly and DAG-aware: Rewriting Boolean
Networks with Exact Synthesis”. In: DATE. 2019.

[19] H. Riener et al. “Scalable Generic Logic Synthesis: One Approach to
Rule Them All”. In: DAC. 2019.

[20] Mathias Soeken et al. The EPFL logic synthesis libraries.
arXiv:1805.05121v2. Nov. 2019.

[21] Minjie Wang et al. “Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks”. In: arXiv preprint
arXiv:1909.01315 (2019).

[22] A. Hosny et al. “DRiLLS: Deep Reinforcement Learning for Logic
Synthesis”. In: ASP-DAC. 2020.

[23] H. Riener, A. Mishchenko, and M. Soeken. “Exact DAG-aware
Rewriting”. In: DATE. 2020.

[24] Keren Zhu et al. “Exploring Logic Optimizations with Reinforcement
Learning and Graph Convolutional Network”. In: MLCAD. Associa-
tion for Computing Machinery, 2020.

